Building a simple air quality indicator

I demonstrated Using a bicolour LED with an NodeMCU in an earlier blog.

We now extend that code and instead of having a single LED, we have two. One LED will indicate the current levels of PM2.5, and the other LED will indicate the current levels of PM10. To do this we need to connect to the internet and download these levels from the Clean Air Eastbourne API. The API returns a single float as a string with the current value in µg/m3.

The wiring is very similar to the previous blog post, except we include an extra LED connected to D3 and D4 on the NodeMCU.

The code

The NodeMCU has support for WiFi built in thanks to it’s ESP8266 chip, so it’s very easy to go online in our in setup()loop() function we poll for values every 30 seconds. We turn these values into floats and compare our snapshot against the WHO annual guidelines limits, and UK annual legal limits. If we’re below WHO and UK limits, we show green. If we’re above WHO limits, but below UK limits, we show amber. If we’re above both WHO and UK limits, we show red.

#include <ESP8266WiFi.h>
#include <ESP8266HTTPClient.h>

// Wifi connection details
const char* ssid = "Wifi Network";
const char* password = "Wifi Password";

// Poll URLs
const char* PM10_URL = "http://api.eastbourneair.com/readings/906088-pm10";
const char* PM25_URL = "http://api.eastbourneair.com/readings/906088-pm25";

// How often to poll the website for updates (in microseconds)
const int POLL_DELAY = 30000;

// Limits for particulates from the WHO and UK.
// These are annual limits.
const float WHO_PM10 = 20.0;
const float WHO_PM25 = 10.0;
const float UK_PM10 = 40.0;
const float UK_PM25 = 25.0;

// The TriColour LEDs are wired to the following pins
int redPinPM10 = D2, greenPinPM10 = D1;
int redPinPM25 = D3, greenPinPM25 = D4;

void setup () {
  pinMode(redPinPM10, OUTPUT);
  pinMode(redPinPM25, OUTPUT);
  pinMode(greenPinPM10, OUTPUT);
  pinMode(greenPinPM25, OUTPUT);

  Serial.begin(115200);
  WiFi.begin(ssid, password);

  while (WiFi.status() != WL_CONNECTED) {
    delay(1000);
    Serial.println("Connecting to Wifi...");
  }

}

void loop() {

  if (WiFi.status() == WL_CONNECTED) { //Check WiFi connection status

    HTTPClient http;  //Declare an object of class HTTPClient

    Serial.println("Getting PM10 data...");
    http.begin(PM10_URL);  //Specify request destination
    int httpCode = http.GET();                                        //Send the request
    if (httpCode > 0) { //Check the returning code

      String payload = http.getString();   //Get the request response payload
      Serial.println(payload);             //Print the response payload

      int reading = payload.toFloat();

      digitalWrite(redPinPM10, LOW);
      digitalWrite(greenPinPM10, LOW);
      if (reading >= WHO_PM10 && reading < UK_PM10) {  // turn the LED if over WHO limits, but under UK
        Serial.println("Over WHO guidelines ");
        digitalWrite(redPinPM10, HIGH);
        digitalWrite(greenPinPM10, HIGH);
      } else if (reading >= UK_PM10) {                 // turn the LED on if over UK limits
        Serial.println("Over UK limits");
        digitalWrite(redPinPM10, HIGH);
      } else {
        Serial.println("under limit");
        digitalWrite(greenPinPM10, HIGH);
      }
    } else {
      Serial.println("Unable to get data from API");
    }
    http.end();   //Close connection


    Serial.println("Getting PM2.5 data...");
    http.begin(PM25_URL);  //Specify request destination
    httpCode = http.GET();                                            //Send the request
    if (httpCode > 0) { //Check the returning code

      String payload = http.getString();   //Get the request response payload
      Serial.println(payload);             //Print the response payload

      int reading = payload.toFloat();

      digitalWrite(redPinPM25, LOW);
      digitalWrite(greenPinPM25, LOW);
      if (reading >= WHO_PM25 && reading < UK_PM25) {  // turn the LED if over WHO limits, but under UK
        Serial.println("Over WHO guidelines ");
        digitalWrite(redPinPM25, HIGH);
        digitalWrite(greenPinPM25, HIGH);
      } else if (reading >= UK_PM25) {                 // turn the LED on if over UK limts
        Serial.println("Over UK limits");
        digitalWrite(redPinPM25, HIGH);
      } else {
        Serial.println("under limit");
        digitalWrite(greenPinPM25, HIGH);
      }
    } else {
      Serial.println("Unable to get data from API");
    }
    http.end();   //Close connection

  } else {
    Serial.println("Not connected to Wifi");
  }

  delay(POLL_DELAY);    // wait before we poll again.
}

Using a bicolour LED with a NodeMCU

This is a quick example on how to use a bicolour LED with a NodeMCU.

The bicolour LED has both red and green LEDs in a single package. There is a common cathode for both the red and green anodes. Applying a current to the red anode turns the red LED on. A current to green anode turns the green LED on. A current to both anodes creates yellow.

The circuit is very simple. We wire the red anode to D1 on the NodeMCU, the green anode to D2, protecting them both with a 220ohm resistor. The cathode is wired to ground.

Linking a bicolour LED to a NodeMCU

We program the NodeMCU using an Arduino sketch.

int redPin = D1, greenPin = D2;

void setup() {
  // set the pins to output mode
  pinMode(redPin, OUTPUT); 
  pinMode(greenPin, OUTPUT);
}

void loop() {
  // red
  digitalWrite(redPin, HIGH); delay(500);
  // yellow
  digitalWrite(greenPin, HIGH); delay(500);
  // green
  digitalWrite(redPin, LOW); delay(500);
  // off
  digitalWrite(greenPin, LOW); delay(500);
}

In the setup, we set D1 and D2 to both be outputs. We then turn D1 and D2 on and off in sequence every half a second to achieve a sequence of red, yellow, green, and off.

NodeMCU Lua setup using a Mac

I recently bought a NodeMCU. This is a small ESP8266 based card with built in WiFi, MicroUSB, and a Lua interpreter that can be used for developing IoT (Internet of Things) devices.

I had trouble getting it working initially, so I wanted to share how I fixed this on a Mac.

Install Mac drivers

If you’re not using a Mac, you can skip this part.

You plug the NodeMCU into the Mac via USB. The Mac won’t support this by default, and you need to install a driver. The driver you need to install is the Silcon Labs CP210x USB to UART Bridge.

Once installed, plug in the NodeMCU and check that the device /dev/tty.SLAB_USBtoUART exists.

To connect to the NodeMCU, you’ll need some tools. To test, download CoolTerm. In Options, for Port select SLAB_USBtoUART, and for Baudrate select 115200.

If you are lucky you’ll get a prompt, if not you may need to build and install some new firmware.

If you do get a prompt type…

print "Hello";

… and Lua should echo “Hello” back to you.

Build and install the NodeMCU firmware

If you need to build new firmware, there is a very useful online site called NodeMCU-Build.com that I used to build the firmware with the right modules I wanted for my project.

Once you’ve build the firmware, you’ll need to install the Python esptool.py to flash the firmware to the NodeMCU.

git clone https://github.com/themadinventor/esptool.git
cd esptool
sudo python ./setup.py install

Check the flash size of your NodeMCU.

To flash the firmware hold down “FLASH” and press “RST” on the NodeMCU, then use the following command (remembering to disconnect CoolTerm first if connected)…

esptool.py --port /dev/tty.SLAB_USBtoUART write_flash -fm dio 0x00000 ~/Downloads/nodemcu-master-12-modules-2017-07-07-21-24-03-float.bin

As esptool.py runs, you should see something like this…

esptool.py v2.0.1
Connecting........_
Detecting chip type... ESP8266
Chip is ESP8266
Uploading stub...
Running stub...
Stub running...
Configuring flash size...
Auto-detected Flash size: 4MB
Flash params set to 0x0240
Compressed 754992 bytes to 505060...
Wrote 754992 bytes (505060 compressed) at 0x00000000 in 44.5 seconds (effective 135.6 kbit/s)...
Hash of data verified.

Leaving...
Hard resetting...

Connect to it using CoolTerm, then press the “RST” button. You should see some messy characters, then something like following (depending on what you built into your firmware)…

NodeMCU custom build by frightanic.com
.branch: master
.commit: c8ac5cfb912ff206b03dd7c60ffbb2dafb83fe5e
.SSL: true
.modules: adc,bit,cron,crypto,encoder,file,gpio,http,i2c,net,node,ow,pcm,sjson,sntp,spi,struct,tmr,u8g,uart,websocket,wifi,tls
 build .built on: 2017-07-12 09:30
 powered by Lua 5.1.4 on SDK 2.1.0(116b762)
lua: cannot open init.lua
>

Upload Lua code to the NodeMCU

The best way to get Lua code onto the NodeMCU is to use the Python luatool.

git clone https://github.com/4refr0nt/luatool
cd luatool

To test we’ll upload a simple Lua script that will blink the NodeMCU’s onboard LED, save this as “blink.lua”.

LED_PIN = 0

gpio.mode(LED_PIN, gpio.OUTPUT)
value = true

tmr.alarm(0, 500, 1, function ()
    gpio.write(LED_PIN, value and gpio.HIGH or gpio.LOW)
    value = not value
end)

Upload it to the NodeMCU using the following command (making sure Coolterm is disconnected first)…

python luatool/luatool.py --port /dev/tty.SLAB_USBtoUART --src blink.lua --dest init.lua --dofile

You should see the following…

->file.open("init.lua", "w") -> ok
->file.close() -> ok
->file.remove("init.lua") -> ok
->file.open("init.lua", "w+") -> ok
->file.writeline([==[LED_PIN = 0]==]) -> ok
->file.writeline([==[]==]) -> ok
->file.writeline([==[gpio.mode(LED_PIN, gpio.OUTPUT)]==]) -> ok
->file.writeline([==[value = true]==]) -> ok
->file.writeline([==[]==]) -> ok
->file.writeline([==[tmr.alarm(0, 500, 1, function ()]==]) -> ok
->file.writeline([==[gpio.write(LED_PIN, value and gpio.HIGH or gpio.LOW)]==]) -> ok
->file.writeline([==[value = not value]==]) -> ok
->file.writeline([==[end)]==]) -> ok
->file.flush() -> ok
->file.close() -> ok
->dofile("init.lua") -> send without check
--->>> All done <<<--

The onboard LED on the NodeMCU should now be blinking.

The NodeMCU executes the init.lua script by default, so when we upload we tell luatool to upload our blink.lua script as init.lua.

Controlling a LED on a Raspberry Pi with PHP

I wanted to make a LED light up using PHP on a Raspberry Pi. Most of the examples I’ve seen are for Python, so I wanted to see if was possible or not.

It is actually pretty easy to do, so I thought I’d share my work.

The first thing to do is to wire up the LED to the Raspberry Pi. I used a breadboard so there is no soldering required.

Connect the LED to GPIO pin 18, along with a 330ohm resistor, to GND. We need the resistor to limit the current through the LED otherwise it could burn out.

That’s the LED attached to Raspberry Pi, now we need to control it with PHP code.

PHP LED Control Code

Before we can write any PHP, we need to enable the gpio module on the Raspberry Pi.

sudo modprobe w1-gpio

We need a third party PHP library to be able to talk to the GPIO pins. I’m using php-gpio.

We need to install this with Composer before we can use it.

get http://getcomposer.org/composer.phar
php composer.phar require ronanguilloux/php-gpio

We can now start our PHP code by using the autoloader to bring in the GPIO library.

require 'vendor/autoload.php';

use PhpGpio\Gpio;
$gpio = new GPIO();

Now to control the LED we need to make sure GPIO pin 18 is set to “out”.

$gpio->setup(18, 'out');

To turn the LED on we write the value “1” to pin 18.

$gpio->output(18, 1);

To turn the LED off we write the value “0” to pin 18.

$gpio->output(18, 0);

Finally, we need to make sure we clean up after ourselves.

$gpio->unexportAll();

The Final Code

Bringing this all together, we can write a simple PHP script to turn the LED on, wait 1 second, and turn it off again.

<?php

require 'vendor/autoload.php';

use PhpGpio\Gpio;
$gpio = new GPIO();
$gpio->setup(18, 'out');

echo "LED on\n";
$gpio->output(18, 1);

sleep(1);

echo "LED off\n";
$gpio->output(18, 0);

$gpio->unexportAll();

The final code needs to be run as root to be able to access gpio.